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T
he collective excitations of conduc-
tion electrons in nanostructured met-
als known as plasmons are currently

finding application in areas as diverse as
ultrasensitivebiosensing,1�3 cancer therapy,4,5

photodetection,6 and improved photo-
voltaics,7,8 out of which commercial devices
are either available or expected to be re-
leased in the short term. Additionally, plas-
mons are being investigated for potential
use in optical signal processing,9 improved
nonlinear response,10,11 and quantum infor-
mation devices.12,13 These fields are fueled
by the ability of plasmons (i) to confine
electromagnetic energy down to truly nano-
meter scales, well below the wavelength
scale imposed by the diffraction limit, and
(ii) to consequently enhance the light in-
tensity relative to externally supplied illu-
mination.14 However, as powerful as plas-
mons may seem, further exploitation of
these excitations is being hampered by
their limited lifetimes, typically of a few tens
of optical cycles in confined configurations
(e.g., ∼10�13 s within the near-infrared).
Additionally, plasmons are difficult to con-
trol without producing structural changes in
the materials in which they are trapped.
In this context, the high degree of con-

finement and long lifetimes of plasmons in
graphene compared to conventional metal
plasmons15 have stimulated intense experi-
mental and theoretical efforts to study these
collective excitations, partly triggered by
the prospect of applications to metamateri-
als,16,17 photodetection,18,19 and quantum
optics.20 Besides its high degree of crystal-
linity compared to noble metals, graphene
offers the advantage of being easily tunable
via electrostatic gating, whereby a net den-
sity of electrons or holes is created in the
carbon sheet to screen the perpendicular dc
electric field produced by a nearby elec-
trode, typically placed in a backgate config-
uration. This provides a convenient way to
tune the Fermi energy up to >1 eV21,22 and

to electrostatically control the frequency and
even the mere existence of plasmon states.
The electrostatic tunability of graphene plas-
mons has been recently demonstrated in
measurements of the terahertz light absorp-
tion by ribbons18 and the infrared scattering
strength of a tip situated near graphene.23
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ABSTRACT

Graphene plasmons are emerging as an alternative solution to noble metal plasmons, adding the

advantages of tunability via electrostatic doping and long lifetimes. These excitations have been so far

described using classical electrodynamics, with the carbon layer represented by a local conductivity.

However, the question remains, how accurately is such a classical description representing graphene?

What is the minimum size for which nonlocal and quantum finite-size effects can be ignored in the

plasmons of small graphene structures? Here, we provide a clear answer to these questions by

performing first-principles calculations of the optical response of doped nanostructured graphene

obtained from a tight-bindingmodel for the electronic structure and the random-phase approximation

for the dielectric response. The resulting plasmon energies are in good agreement with classical local

electromagnetic theory down to∼10 nm sizes, below which plasmons split into several resonances

that emphasize the molecular character of the carbon structures and the quantum nature of their

optical excitations. Additionally, finite-size effects produce substantial plasmon broadening compared

to homogeneous graphene up to sizes well above 20 nm in nanodisks and 10 nm in nanoribbons. The

atomic structure of edge terminations is shown to be critical, with zigzag edges contributing to

plasmon broadening significantly more than armchair edges. This study demonstrates the ability of

graphene nanostructures to host well-defined plasmons down to sizes below 10 nm, and it delineates

a roadmap for understanding theirmain characteristics, including the role offinite size and nonlocality,

thus providing a solid background for the emerging field of graphene nanoplasmonics.

KEYWORDS: plasmonics . graphene plasmons . nanophotonics . tight-binding .
RPA response . graphene nanodisks . nanoribbons
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The optical response of graphene has been
extensively investigated on theoretical grounds in
homogeneous15,20,24�26 and nanopatterned17,19,20,27,28

structures, although most of the reported work relies on
aclassical electromagneticdescriptionof thecarbonsheet,
which is represented by a local, frequency-dependent
conductivity. A first-principles analysis including non-
local effects has only been performed for extended
graphene15,24,25,29 and for plasmon energies in narrow
(<1.5 nm) armchair ribbons.30 The latter exhibit plasmons
even when they are undoped, in contrast to zigzag
ribbons,30 thus indicating that carbon edge terminations
play an important role in the band structure and the
optical response of nanostructured graphene. Such a
dramatic dependence on carbon edges is accompanied
byopeningof electronbandgaps (∼20meV for awidthof
25 nm) and formation of localized edge states in zigzag
ribbons.30�34 Although these effects are expected to be
small in samples with characteristic dimensions above
100 nm, a comprehensive study in truly nanometer-sized
structures is still missing.
In this article, we present first-principles calculations

of the optical response of graphene nanodisks and
nanoribbons. We describe doped graphene using a
tight-binding model for the electronic structure35,36 and
the random-phaseapproximation (RPA)37 for thedielectric
response. The resulting plasmon energies are predicted
to follow quite closely those obtained from classical
electrodynamics, except for sizes below ∼10 nm, for
which themolecular character of the carbon structures
shows up by splitting the plasmon features into an
increasing number of resonances as the size is reduced.
In contrast, the plasmon lifetime displays a slower con-
vergence toward classical theory and remains well below
the relaxation time of homogeneous graphene even in
structures larger than 20 nm. Our results demonstrate
that doped graphene is capable of sustaining plasmons
down to sub-10 nm structures, whose understanding
requires going beyond classical local electrodynamics.

RESULTS AND DISCUSSION

First-Principles Description of Graphene Plasmons. At low
energies below ∼1 eV, the optical response of carbon
allotropes is dominated by excitations of the π valence
band, formed by electrons residing in the carbon 2p
orbitals oriented perpendicularly with respect to the
local carbon bonds and populated on average with
one electron per carbon site (i.e., this band is half filled
due to spin degeneracy). The σ band lies deeper in
energy and only contributes with a nearly uniform
background polarization. Excited states are formed
when π electrons hop between neighboring sites,
and thus, it is natural to study the π band within a
tight-binding model, in which one-electron states are
linear combinations of carbon 2p orbitals (one per
site).35 A tight-binding Hamiltonian is then defined as

explained in the Methods section. Despite its simplicity,
the tight-bindingmodel provides a reliable description
of the electronic structure,36 particularly when used
inside the RPA susceptibility (see below), which is an
integrated quantity that should be rather insensitive to
corrections affecting individual electron levels due to
many-body interations38,39 and edge effects.40 As a
first step in our calculation, we diagonalize this Hamil-
tonian forpatternedgrapheneand find its single-electron
states. For finite structures formedbyN atoms (e.g., nano-
disks), this leads to a set of N doubly spin-degenerate
states. Inneutralgraphene,onlyhalf of themareoccupied,
but in doped graphene configurations, they are filled up
to a Fermi energy (EF) relative to undoped carbons sheets.

The structures under discussion are small compared
to the light wavelength, and consequently, they are
accurately described within the electrostatic limit, in
which the charge density Fl induced on each carbon
site l can be expressed in terms of the self-consistent
potential φl0 acting at all sites l0 as

Fl ¼ ∑
l0
χ0ll0φl0 (1)

where χll0
0 is the noninteracting susceptibility. Further-

more, we obtain χ0 using the RPA,37 in which only
electron�hole pair excitations are considered. The
susceptibility is then constructed from the expansion
coefficients ajl of the tight-binding states ∑lajl|læ, where
j is a state label and l runs over carbon sites. More
precisely37

χ0ll0 (ω) ¼
2e2

p ∑jj0
(fj0 � fj)

ajla
�
jl0a

�
j0 laj0 l0

ω � (εj � εj0 )þ i=2τ
(2)

whereω is the light frequency, pεj is the energy of state
j and fj = {exp[pεj � EF)/kBT]þ 1}�1 is its occupation at
temperature T (we set T = 300 K throughout this work),
τ is an intrinsic relaxation time,41 and the factor of 2
before the sum stems from spin degeneracy. A direct
evaluation of χ0 for a carbon cluster formed byN atoms
(e.g., N ∼ 12 000 for 20 nm disks) constitutes a tour de
force that requires summing ∼N4 terms, so instead,
we employ an alternative procedure based upon the
use of the fast Fourier transform (FFT), which reduces
the task to∼N3 operations, as explained in theMethods
section. Incidentally, the orthogonality of the electron
states directly implies ∑lχll0

0 = 0, and this in turn guar-
antees the vanishing of the net induced charge ∑lFl = 0
(see eq 1). Now, the total potential is the sum of the
external potential φext and the potential produced by
the induced charges:

φl ¼ φext
l þ ∑

l0
vll0Fl0 (3)

where vll0 is the Coulomb interaction produced on the p
orbital at site lby aunit chargewith thedistributionof the
p orbital at site l0. This interaction is roughly 1/r for l 6¼ l0,
whereas vll = 0.58 atomic units (au). Nonetheless, we
calculate vll0 rigorously using the probability distribution
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associated with carbon 2p orbitals taken from tabulated
atomic data.42 We self-consistently solve eqs 1 and 3 to
find Fl and then compute the absorption cross section

σabs ¼ 4π(ω=c)ImfR(ω)g
from the polarizability R, which is in turn given by the
dipole induced upon illumination with a uniform elec-
tric field Eext (i.e., φl

ext = � xlE
ext) as

R(ω) ¼ (1=Eext)∑
l

xlFl

where xl are the projections of the atomic coordinates
along the external field direction.

Finite-Size and Nonlocal Effects in Graphene Nanodisks. We
show in Figure 1a several examples of extinction spectra
calculated for graphene nanodisks of different size and
a common doping level (EF = 0.4 eV). A first striking
observation is the presence of multiple peaks in the
smallest disk under consideration (diameter D = 10 nm).
Rather than a proper clearly definedplasmon, the spectra
for both orientations of the incident light polarization
relative to the carbon lattice exhibit several narrowpeaks,
the width of which is roughly equal to the intrinsic width
pτ�1 introduced through eq 2. For larger structures
(D = 20 and 24 nm), these peaks evolve toward a single
prominent peak of larger width, rather independent of
the orientation of the incident polarization. A similar
trend toward a single plasmon peak is observed when
increasing the intrinsic width (see Figure S6 in the
Supporting Information).Whencomparedwith a classical
calculation of the extinction (black curves), we see that
this is in fact the dipolar plasmon sustained by these
structures. The classical calculation is based upon a

description of the graphene in terms of a frequency-
dependent local surface conductivity, which is then
used to match the electromagnetic boundary condi-
tions imposed by Maxwell's equations in the presence
of the nanodisks (see Methods). Remarkably, the clas-
sically calculated plasmon exhibits a narrow width
∼pτ�1, in contrast to themuchbroaderplasmon features
predicted by our first-principles RPA calculations.

Figure 1b presents a summary of nanodisk extinc-
tion spectra obtained as a function of disk diameter for
polarizations either along x or y (see inset in Figure 1a).
The actual spectra are given in the Supporting Inform-
ation (Figure S8). For each value of the diameter,
this plot contains several symbols indicating the dif-
ferent peaks that show up in the spectra. The size of
each symbol is roughly proportional to the strength
of the corresponding peak. We observe a clear trend
of convergence of spectral features toward a single
plasmon band as the diameter increases. Actually,
convergence toward the plasmon energy predicted
by the classical model is nearly achieved for diameters
above ∼20 nm. For smaller sizes, the strength of the
plasmon is generally situated at larger energies (i.e., it is
blue-shifted) compared to the classical calculation.

In order to quantify the plasmon width for small
diameters, given the complex structure of the spectra,
we introduce the half-area width, which we define as
the accumulated width of a spectral region centered
around the average plasmon energy and containing
half of the integrated area under the spectrum (in
particular, the half-area width is equal to the fwhm
for single Lorentzian peaks). In practice, we define a

Figure 1. Plasmons in graphene nanodisks. (a) Extinction cross section calculated in the RPA for self-standing graphene disks
of different size and for incidence perpendicular to the disks with polarizations along the x or y directions (see inset),
compared with classical electromagnetic theory. The main features in the plot correspond to induced parallel dipoles. (b)
Spectral features in the extinction spectra (symbols) comparedwith the classical electromagnetic dipole plasmon energy as a
function of disk size. The symbol sizes are scaled with the strength of the spectral peaks. (c) Ratio of integrated area in the
spectra calculated within the RPA to the classical plasmon peak area. (d) Plasmon half-area width in our RPA calculations
(symbols) and in the classical theory (lower curve, which roughly coincides with the input width pτ�1 = 1.6 meV). Dashed
curves in (c) and (d) are guides to the eye. The Fermi energy is EF = 0.4 eV in all cases.
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spectral window in the 0�1 eV range for this purpose.
A trend of convergence toward the classical result
(∼pτ�1), similar to what happened with the plasmon
energy, is observed for the plasmon width, although
this is still well above the intrinsic damping pτ�1 even
for a relatively large diameter D = 24 nm (Figure 1d).
(Incidentally, small disks of 2 nm in diameter only
display one peak within the spectral window under
consideration (see Supporting Information, Figure S8),
the width of which roughly corresponds to the intrinsic
damping. Larger disks contain several peaks, and this
explains the sudden jump in plasmon width.) Likewise,
the ratio of plasmon areas calculated from the RPA and
from the classical model (Figure 1c, with the areas
integrated over the noted spectral window) is slowly
converging toward 1 with increasing diameter. It
should be noted that the finite-size effects under
discussion occur even for plasmon energies well below
EF (large diameters in Figure 1), and therefore, their
origin is different from Landau damping taking place
in homogeneous graphene when the plasmon band
overlaps the electron�hole excitation region at plas-
mon energies roughly above the Fermi energy.

The additional finite-size width of the plasmon with
respect to the intrinsic width pτ�1 seems to be well
preserved over a large range of τ (Figure 2a), thus
indicating that it is consistently produced by finite-size
and edge effects. It rapidly decreases with increasing
disk diameter (Figure 2b), although it is still taking
considerable valueswell above pτ�1 forD= 24nm. This

behavior can be ultimately understood by noticing the
finite spectral separation between different individual
excitations in small structures (see Figure 1a and
Figure S8 in the Supporting Information), which,
even after incorporating the interaction between ex-
cited electron�hole pairs in a self-consistent fashion
through the RPA, continue to be separated by a
considerable distance in photon energy. For finite
relaxation time τ, these peaks coalesce into a single
broader plasmon feature (see Figure S6 in the Sup-
porting Information), thus transforming the energy
distance between individual excitations into an effec-
tive broadening of the plasmon as a whole.

At this point, it is useful to examine the distribution
of electronic energies. For example, a disk with D =
12 nm and EF = 0.4 eV (Figure 2c) exhibits a character-
istic electronic gap near the Fermi level that defines
a minimum excitation energy and, therefore, also an
optical gap. Moreover, it displays a pileup of electron
states around zero energy, essentially localized near
zigzag edges of the graphene nanodisk (see Figures S3
and S4 in the Supporting Information for more details).
The complex interplay between electronic states via

their mutual orthogonality enters this picture by pro-
ducing more broadening (i.e., larger energy separation
between the constituent individual excitations noted
above) when edge states are present (see also a related
discussion for ribbons in next section). One might
naively think that near-zero-energy edge states only
contribute to broadening for plasmon energies

Figure 2. Finite-size and nonlocal effects in the plasmons of graphene nanodisks. (a) Evolution of the half-area dipole
plasmon width as a function of input intrinsic width pτ�1. A nearly constant difference between these two is found and
denoted finite-size width. (b) Variation of the finite-size width with disk diameter D, showing a roughly linear dependence
with 1/D. The straight line corresponds to a plasmon width given by 2pvF/D. (c) Pseudodensity of states (P-DOS) in a 12 nm
disk, showing a gap near the Fermi energy EF = 0.4 eV and near-zero-energy states. (d) Gap energy dependence on disk size.
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exceeding the Fermi energy (see Figure 2c), but this is
at odds with the smooth dependence of the plasmon
width on disk size around the point where the plasmon
energy is crossing EF (i.e.,D≈ 12 nm; see Figure 1b,d). A
possible mechanism of decoherence is related to the
distortion of the electronic wave functions near zigzag
edges, which is needed in order to fulfill the orthogo-
nality of every electron state with respect to edge states.
This distortion can potentially provide extra momentum
needed to produce additional electron�hole pair transi-
tions that couple to the plasmon, in contrast to the
stringent momentum conservation conditions in homo-
geneous graphene. The electronic gap can also influence
the plasmon width by limiting the number of available
electron�hole transitions for a given plasmon energy. In
this respect, it is interesting to note that the gap exhibits
a similar trend as the finite-size width, with a strong
decrease toward zero as the disk diameter increases.

The plasmon width shows a nearly linear depen-
dence on 1/D (Figure 2b), similar to that of metallic
nanoparticles.43,44 This is phenomenologically under-
stood from Kreibig's model,43 which associates the
extra broadening with the time spanned between
electron (or hole) edge collisions. The relevant elec-
trons are moving at a speed close to the Fermi velocity
vF, and the increase in the plasmon decoherence
rate for nanoparticles of diameter D is ∼2vF/D.

43 The
straight line in Figure 2b corresponds to 2pvF/D, in
excellent agreement with the RPAwidth. This supports

the interpretation of the nanodisk plasmon width as
originating in quantum confinement and finite-size
effects, similar to what happens inmetal nanoparticles.
However, in contrast to nanoparticles, small disks of
size below ∼10 nm exhibit multiple excitations that
emphasize the molecular character of these structures
(see Supporting Information, Figure S8), possibly due
to the low number of involved graphene electrons
compared to metal nanoparticles of similar diameter.
The role of edge states discussed above also introduces
a clear difference with respect to nanoparticles.

The spectral structure of the plasmon is expected
to be complex, as it results from accumulation of
multiple peaks toward a single plasmon energy as
the disk diameter increases. This is clearly illustrated
in Figure 3, where a disk of size D = 16 nm is analyzed.
The plasmon is not yet fully consisting of a single peak
for the values of D and pτ�1 = 1.6 meV under
consideration (Figure 3a). We show the near-field
and the induced charge associated with two of the
spectral features within the plasmon region, and we
find very different spatial behavior (cf. A and B in
Figure 3c,d), particularly when compared to the clas-
sical model (C). Additionally, the field enhancement
obtained from the RPA is considerably smaller than
that predicted by classical theory (see caption of
Figure 3), in agreement with recent calculations for
metallic dimers.45 This information is important for
assessing the strength of the interaction between this
structure and additional elements such as molecules
for potential use in biosensing or to achieve strong
light�matter interaction.20

Understanding Edge Effects in Nanoribbon Plasmons. An
extension of the formalism presented above allows us
to simulate graphene nanoribbons (see Methods).
In particular, we consider ribbons with either zigzag
or armchair edges exposed to a uniform electric
field directed across the ribbon width, from which we
calculate the absorption cross section under normal
incidence conditions. Themain results are summarized
in Figure 4, which presents the evolution of the
plasmon energy and the plasmon width for different
edge terminations. Like in the nanodisks studied
above, nanoribbon plasmons are dipolar and thus
couple efficiently to external light. In contrast to disks,
nanoribbons exhibit a single plasmon feature down to
very small widths, presumably due to the fact that
electron�hole transitions are summed over a conti-
nuum of electron parallel wave vectors along the
ribbon direction (i.e., the electronic spectrum is con-
tinuous in ribbons, but it is discrete in nanodisks). The
plasmon energies obtained from first-principles calcu-
lations (Figure 4b, symbols) nicely converge toward the
classical result for sizes above ∼10 nm and show a
small blue shift at small ribbon widths. The plasmon
width also converges toward the intrinsic value deter-
mined by τ (Figure 4c), but this convergence is

Figure 3. Fine structure in the plasmon features. (a,b)
Extinction spectrum for a disk with physical parameters as
shown by text insets, calculatedwithin the RPA (a) and from
a classicalmodel (b). Light is incident normal to thediskwith
the electric field along the y direction. (c) Normalized
electric field intensity (log scale) at a distance of 0.5 nm
above the disk for features A and B of the RPA spectrum,
compared to the classical calculation (C). The intensity
enhancement relative to the incident field is 810, 64, and
2.7� 105 in A�C, respectively. (d) Normalized charge-density
amplitude (linear scale saturated outside [�0.25,0.25]) for the
same features as in (c).
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remarkably faster in armchair ribbons. In contrast,
zigzag ribbons host electron states confined to the
edges,31 which seem to be responsible for the addi-
tional plasmon broadening.

Comparing ribbons and disks of similar size (width =
diameter), the plasmon width in nanodisks is almost 1
order of magnitude larger than in zigzag ribbons
(cf. Figure 1d and Figure 4c). This suggests that plasmon
broadening in nanodisks and nanoribbons is due to
different physical mechanisms. Quantum confinement
can produce plasmonbroadening because the plasmon
finds new electron�hole pair excitations into which it
can decay compared to homogeneous graphene; the
finite size of the electron (hole) wave functions trans-
lates into extra momentum to fulfill energy-momentum
conservation. This mechanism should be more efficient
in nanodisks than in nanoribbons because disks have
larger perimeter-to-area ratio. The inhomogeneous
edges and edge-state distributions in nanodisks also
contribute in a similar manner to broaden the plasmon,
as explained above. These mechanisms are compatible
with the large calculated broadening of nanodisk plas-
mons, exhibiting a nearly linear dependence on 1/D
(Figure 2b). In contrast, the width of nanoribbon plas-
mons displays a more complicated dependence on the
inverse ribbon width 1/W (see Supporting Information,
Figure S10). We expect quantum confinement to be less
effective in nanoribbons because the electron states are
free tomove along the spatial direction parallel to them.
Edge states in zigzag ribbons are thus the likely origin of
additional plasmon broadening in these structures,
although their effect is diminished with respect to
nanodisks because ribbons have uniform edges. These
conclusions are further supported by the fact that arm-
chair ribbons, in which edge states are not present,

display a much smaller plasmon broadening, compar-
able in magnitude to the classical calculation.

Edge states emerge with near-zero energy,31 so
they contribute to the plasmon width for plasmon
energies above EF via excitation to unoccupied con-
duction states. This is what we observe in Figure 4: the
plasmon energy exceeds the Fermi energy when the
ribbon width drops below∼12 nm (Figure 4b), and the
plasmon width rises enormously in narrower zigzag
ribbons (Figure 4c). However, the width of zigzag
ribbon plasmons is significantly larger than that of
armchair ribbon plasmons up to a ribbon width of
≈20 nm, thus pointing to an additional mechanism
other than direct excitation of edge states. A possible
explanation is provided by the distinct band structures
of armchair and zigzag ribbons, which allow transitions
between states of opposite wave vector along the
ribbon direction only in zigzag ribbons,30 thus increas-
ing the number of electron�hole decay channels
available to the plasmons.

We have recently shown that for the ribbon widths
W under consideration (, light wavelength) an elec-
trostatic scaling law applies to the classically calculated
plasmon frequency, namely28

η ¼ Imfσ(ωp)g
ωpW

(4)

where σ is the graphene surface conductivity and η is
just a constant that only depends on the direction of
light incidence and mode polarization. Under normal
incidence conditions, the dipole plasmon frequency is
obtained by setting η = 0.0675. Then, using the local
RPA model for σ, as described in the Methods section,
the solution of eq 4 yields a plasmon frequency
that cannot be distinguished from the solid curve of

Figure 4. Plasmons in nanoribbons. (a) We consider nanoribbons with armchair and zigzag edges. The relative alignment
between both edges is clearly shown in the figure. (b) Variation of the plasmon energy with ribbon width, calculated in the
RPA (symbols) and from a classical electromagnetic description (curve). (c) Plasmon half-area width as a function of ribbon
width.
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Figure 4b (full electrodynamic calculations) on the
scale of the plot. Additionally, in the Drudemodel, the
electrostatic scaling law predicts that the plasmon
width equals the intrinsic width pτ�1,28 in good
agreement with the solid curve of Figure 4c, except
for ribbons of small width, <10 nm, for which the
plasmon energy lies above EF, thus being broadened
by Landau damping, not accounted for by Drude. It is
remarkable that this simple analytical law is in quan-
titative agreement with the RPA calculations here
presented for the plasmon energy in ribbons wider
than 10 nm and also for the plasmon width in arm-
chair ribbons wider then ∼10 nm and in zigzag
ribbons wider than ∼20 nm.

CONCLUSIONS

We have performed first-principles calculations of
the optical response of doped graphene nanodisks
and nanoribbons within the RPA using a tight-bind-
ing model for the electronic states. The plasmon
width and frequency are dramatically influenced by
nonlocal and quantum finite-size effects, compared
to a classical electromagnetic description reported
elsewhere.20 Similar to what happens in small me-
tallic nanoparticles,43�47 plasmon blue shifts are
clearly observable due to these effects up to nano-
disk diameters and ribbon widths above ∼10 nm.
Plasmon broadening is also significant up to sizes
above ∼25 nm compared to the plasmon width in
homogeneous graphene. We attribute these effects
to both the finite size of the structures and the
presence of electronic edge states. In particular,
localized electron states are supported by zigzag
edges31 (see Supporting Information, Figures S3
and S4), which lead to extra plasmon broadening in
ribbons with that kind of termination as compared to
ribbons of similar size but with armchair edges
instead. For small structures below∼20 nm, nanodisk
plasmons display considerable fine structure that is
clearly resolvable even when considering a conservative
intrinsic broadening, thus emphasizing the molecular
character of nanostructured graphene. This is in contrast
to nanoribbons, which exhibit a single plasmon feature
within the range of ribbon widths under consideration
(5�30 nm). Actually, nanoribbons and nanoparticles
share in common a large number of electronic states
and optical transitions compared to nanodisks, which
lead to a single plasmon feature rather thanmolecule-like
modes at small sizes.
Plasmons in nanoribbons wider than 10 nm have

been shown to rapidly converge in energy to the results
predicted by classical electrodynamics, although the
plasmonwidth is significantly affectedbyfinite-size and
edge effects in ribbons of widths below ∼10 nm for
armchair terminations and below ∼20 nm in zigzag
ribbons. Nanodisks contain a combination of these
types of edge terminations, and thus, they are affected

by edge states, as well. Actually, the ratio of edge
perimeter to graphene area is larger in nanodisks,
which is consistent with the fact that plasmon blue
shifts and broadenings occur in these structures up
to large diameters compared to the ribbon widths.
It must be noted that such small graphene structures
have been recently synthesized,48 thereforemaking the
experimental verification of our work feasible in the
short term, although it is still technically challenging
to combine the required nanofabrication tools with
good control over graphene doping and infrared op-
tical measurements.
It is useful to realize that the number of electrons

needed to dope a D = 20 nm graphene nanodisk up to
a Fermi energy EF = 0.4 eV is only ≈ (EFD/2pvF)

2 ≈ 37,
where we use the electron density in doped homo-
geneous graphene (n = EF

2/(πp2vF
2)) for this estimate.

Adding or removing one extra electron thus requires
an attainable change of ≈5 meV in EF, which results in
a shift by ≈2 meV in plasmon energy, according to
the electrostatic scaling law28 (ωp

2D/EF = constant),
although actual values might be influenced by the
finiteness of the electronic gap. These numbers point
to the unprecedented possibility of inducing obser-
vable plasmon shifts by electrically injecting one
single electron to the graphene structure. Careful
analysis of finite-size effects is required to analyze
this phenomenon, which can find application to
optical switching with ultrasmall amounts of electric
energy.
In practical terms, nanodisk doping presents a tech-

nical challenge because of the damaging effects that
conventional metallic leads can have on the optical
response of the structure. Decorating the disks with
bridges made of a transparent, conductive material
can be a solution, whereas chemical doping is another
option, which can be useful for achieving optical
sensing of chemical changes in a fluid surrounding
the graphene. Aternatively, local doping in a small
graphene region of an extended flake can be driven
by a nearby charged metal tip, so that the resulting
structure mimics a nanodisk of diameter comparable
to the tip�graphene separation. This configuration
should allow plasmons to be confined in the doped
region, possibly exhibiting increased plasmon lifetimes
due to the absence of damaging edge states.
In summary, a classical electromagnetic treatment is

a reasonable approximation only for graphene ribbons
and disks with characteristic dimensions of at least
several tens of nanometers, whereas a proper quantum
description of the electronic states and their collective
excitations as presented here is needed for smaller
sizes. Our work is thus serving two purposes: (i) it
provides a solid justification for the use of classical
theory in large structures; and (ii) it presents a land-
scape for plasmons in smaller structures, which can
find potential application to nanophotonic devices
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(e.g., in plasmon�molecule interactions, ultrasensitive
optical detection through SERS or SEIRA, and the noted
variation of plasmon energy by adding or removing

one single electron to/from a graphene nanoisland),
but require careful treatment of nonlocal and finite-
size effects.

METHODS
Tight-Binding Model. In the tight-binding approach, the one-

electron states j in the π band are constructed as linear
combinations of carbon 2p orbitals ∑lajl|læ, where l runs over
carbon sites. Incidentally, we disregard spin�orbit interactions,
so that electron spin enters the RPA response just through an
overall factor of 2 in the noninteracting susceptibility χ0 (see
eq 2). We assume orthogonality between site states, Æl|l0æ = δll0 .
The only nonzero elements of the tight-binding Hamiltonian H
involve nearest neighbors l and l0 , for which Æl|H|l0æ = �t, where
the hopping energy t is a fitting parameter. In homogeneous
graphene, thismodel predicts a band structure characterized by
two inequivalent so-called Dirac cones, crossing the Fermi level
at two inequivalent K corner points of the hexagonal first
Brillouin zonewith an energy dependence≈(pvF|k|,

35,49where
k is the electron wave vector relative to the corresponding Dirac
point, vF ≈ 3ta0/2p is the Fermi velocity, and a0 = 1.421 Å is the
C�C bond distance. The Dirac cone has been traced through
photoemissionmeasurements,50 fromwhich fine corrections to
the band structure have been resolved, although we expect
them to be washed out by summing over electron�hole pairs
in χ0. The measured Fermi velocity vF ≈ 106 m/s leads to a
hopping parameter t ≈ 3.1 eV, which is close to the actual
value that we use here (t ≈ 2.8 eV), deduced from both STM
measurements of graphene nanoislands48 and fits to ab initio
calculations.36 Incidentally, we neglect next-nearest-neigh-
bor hopping, which is believed to contribute to H with terms
∼0.1 eV.51 Furthermore, we are treating carbon edges with
the same hopping parameter and perfect hexagonal struc-
ture as atoms in homogeneous graphene, while a more
proper description leads to reconstruction and modified
electronic wave functions,52 but summation over states in
χ0 should minimize this type of effect. In this respect, first-
principles calculations beyond the tight-binding model
have been reported for nanoribbons,53,54 from which no
significant corrections are expected to emerge in the optical
response.

Evaluation of the RPA Susceptibility in N3 Time Using the Fast Fourier
Transform. Direct summation of eq 2 involves ∼N4 operations.
This task becomes currently unaffordable for the size of the
structures considered in this work. Instead, we evaluate χ0 in N3

time by writing55,56

χ0ll0 (ω) ¼
2e2

p

Z
Sll0 (ω0)dω0

ω �ω0 þ i=2τ
(5)

where

Sll0 (ω) ¼ ∑
jj0
(fj0 � fj)ajla�jl0a

�
j0 laj0 l0δ[ω � (εj � εj0 )]

¼
Z

dω0[Fll0 (ω0)G�
ll0 (ω

0 �ω) � Gll0 (ω
0)F�ll0 (ω

0 �ω)]
(6)

is a spectral function and

Fll0 (ω)
Gll0 (ω)

" #
¼ ∑

j

ajla
�
jl0δ(ω � εj)

1 � fj
fj

" #
(7)

are auxiliary functions, the evaluation of which takes a time
proportional toN3 (seebelow). The integral of eq 6 is then carried
out using the FFT. Details on the convergence of thismethod are

provided in the Supporting Information (Figure S5). Incidentally,
according to eqs 1 and 3, the self-consistent potential acting on
the carbon atoms reduces to φ = (1 � v 3 χ

0)�1
3 φ

ext, where the
dot indicates matrix multiplication and the atomic-site label l is
used as the matrix index. The matrix inversion needed to
evaluate φ also takes a time ∼N3.

The electron energies are limited to a finite range p|εj| <
pωmax, and therefore, we only need to compute the auxiliary
functions Fll0(ω) and Gll0(ω) for ω within that range, over which
we define a finite grid of Nω frequenciesωn. In order to facilitate
the convolution discussed below, we take equally spaced
frequencies, and Nω is chosen to be a power of 2. We evaluate
the auxiliary functions by splitting the weight of the δ func-
tions in eq 7 into neighboring frequencies, so that each term
j contributes to Fll0(ωn) as

55 ajlajl0
* (1� fj)(εj�ωn)/(ωnþ1�ωn) and

to Fll0(ωnþ1) as ajlajl0
* (1 � fj)(ωnþ1 � εj)/(ωnþ1 � ωn), and like-

wise for G, with εj lying between ωn and ωnþ1. This procedure
has to be repeated over the N2 combinations of sites l and l0 for
each of the N states j, so that it takes a time ∼N3, with
independence of the number of frequencies Nω.

We evaluate the convolution of eq 6 using the FFT in a time
roughly proportional to N log2 Nω for each combination of l and
l0 , thus preserving the approximateN3 time scaling of the overall
computation. This yields Sll0(ωn) over a frequency grid spanning
the range |ωn| < 2ωmax. The FFT is actually carried out using the
FFTW package.57

Finally, the integral of eq 5 is calculated from S by perform-
ing the frequency integral over each element of the ω grid:

χ0ll0 (ω) � ∑
n

WnSll0 (ωn)

where the weights

Wn ¼ 4e2

p

Z ωnþ 1

ωn

ω0dω0

(ωþi=2τ)2 �ω02
ωnþ 1 �ω0

ωnþ 1 �ωn

� �"

þ
Z ωn

ωn � 1

ω0dω0

(ωþi=2τ)2 �ω02
ω0 �ωn � 1

ωn �ωn � 1

� ��
(8)

are analytically computed once and for all the first time that
they are needed.

RPA for Nanoribbons. We consider nanoribbons of period b
along their direction of translational symmetry, containing N
carbon atoms in the unit cell. We describe electronic states
of ribbons with zigzag and armchair edges within the tight-
binding model, which faithfully follows the ribbon electronic
structures previously reported in the literature.31 More pre-
cisely, we use Bloch's theorem58 to construct a complete set
of electron eigenstates labeled by both the carbon site index l
within the first unit cell and the Bloch wave vector k spanning
the first Brillouin zone (|kb| < π). The eigenstate amplitudes thus
become ajl,ke

ikbn, where the integer n runs over unit cells. It is
convenient to decompose the externally applied field in terms
of its Fourier components along the ribbon direction z, onwhich
they depend as φl,q

exteiqz. After some algebra, we find that the
induced charge density and the potential depend on n through
a factor eiqbn; the total potential reads

φl, q ¼ φext
l, q þ ∑

l0
vll0 , qFl0 , q

where
vll0 , q ¼ ∑

n

vl0, l0ne
iqbn

involves a sum of the Coulomb interaction vl0,l0n between atoms
l and l0 separated by n unit cells (charge neutrality, leading to
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∑lχll0
0 = 0, allows us to subtract 1/|nb|, from n 6¼ 0 terms in this

sum to accelerate its convergence); the induced density be-
comes Fl,q = ∑l0χll0 ,q

0
φl0 ,q; and the noninteracting RPA suscept-

ibility appropriate for the 1D translational symmetry reads

χ0ll0, q(ω) ¼ ∑
n

χl0, l0ne
iqbn

� 2e2

p

b

2π

Z π=b

�π=b
dk∑

jj0
(fj0 , k � q � fj, k)

ajl, ka
�
jl0 , ka

�
j0 l, k � qaj0 l0 , k � q

ω � (εj, k � εj0 , k � q)þ i=2τ

where we have approximated qb , 1. We compute χll0 ,q
0 by

performing the k integral using Nk equally spaced points. In
practice, we useNk∼ 104 to achieve convergence in the spectra
for pτ�1∼ 2 meV. We apply this formalism to a uniform electric
field Eext oriented along the ribbon width (i.e., an external
potential � xlE

ext with q = 0, where xl is the coordinate of atom
l along the graphene direction normal to z). Finally, the absorp-
tion cross section reduces to

σ ¼ 4πωL
c ∑

l

xl Im
Fl, q¼ 0

Eext

n o
where L is the ribbon length.

Intrinsic Relaxation Time. In practice, τ in eq 2 represents an
intrinsic relaxation time produced by inelastic electron�
electron, electron�phonon, and electron�impurity scattering.
Actually, electron�phonon coupling plays a leading role at
plasmon energies above the in-plane optical phonon energy
∼0.2 eV.15,34 A first-principles treatment of the relaxation time
must involve many-body interactions, whose computation is out-
side the scope of the present work and becomes extremely
challenging even for homogeneous graphene.38,39 Here, unless
otherwise stated, we take the empirical value τ = 10�12EF in
seconds, where EF is expressed in eV, as estimated from a
measured dc mobility of 10 000 cm2/(V 3 s).

15,59,60 This renders τ
large compared to the relaxationproduced by finite-size and edge
effects in the nanostructures under discussion, and therefore, the
conclusions of our work are rather independent of the exact
choice of τ.

Classical Electromagnetic Calculations. We compare our RPA re-
sults with classical electromagnetic theory throughout this
paper. Classical theory is computed here by rigorously solving
the Maxwell equations using the boundary element method
(BEM)20,61 for nanodisks and nanoribbons. In the BEM, graphene
ismodeled as a thin filmofedges roundedby semicircularprofiles
and characterized by a dielectric function 1þ 4πiσ/ωt, where t is
the film thickness and σ(ω) is the frequency-dependent surface
conductivity. We use t = 0.1 nm, which is well converged with
respect to the tf 0 limit (see Supporting Information, Figures S12
and S13). Most importantly, we take σ(ω) from the local limit of
the random-phase approximation for extended graphene (i.e., for
zero parallel wave vector), which is available in analytical form in
the literature24,25 and reproduced in the Supporting Information
for convenience. By construction, this classical approach must
exactly converge to our RPA calculations in the limit of large
disk radius or ribbon width for vanishing parallel wave vector.
However, dramatic deviations between the RPA and the classical
local theory are reported in this work for disks (ribbons) of finite
radius (width), which are shown to decrease with increasing disk
(ribbon) size beyond a few tens of nanometers.
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